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This paper reports theoretical and experimental results on the density distribution in thermally quenched 
polystyrene. The thermal quenching process is a thermodynamically non-equilibrium process, so that the 
physical properties of the quenched polymer are not homogeneous. From non-equilibrium thermodynamics 
and the concept of change of free volume a theoretical analysis of the density change due to quenching is 
presented. A computer simulation of the theory is compared with experimental results. It is found that 
through incorporating heat transfer and differential thermal expansion calculations with analysis of the 
effects of mean pressure and cooling rate on density, the dependency of quenching on density can be quite 
accurately predicted. 
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INTRODUCTION 

Significant changes in mechanical properties of polymers 
after heat treatment have been previously reported 1~. 
It has been noted that the heat quenching process can 
dramatically improve impact strength, fatigue life and 
other mechanical properties. It has also been reported 
that the density of the polymer changes during 
quenching 1. This paper presents a theoretical model for 
prediction of the density changes and compares these 
results with experimental results for polystyrene quenched 
in ice water and liquid nitrogen. 

The process of quenching a polymer from a 
temperature, T, above the glass transition temperature, 
T v of the material to a lower temperature is a complex 
phenomenon. During the process the temperature and 
its gradient vary rapidly with both sample position and 
time. It is also accompanied by a secondary phase change. 
At every point in the polymer, as the temperature changes 
from the temperature above T s to a temperature below 
T v the polymer changes from a liquid-like state to a 
solid-like state. At the same time thermal contraction 
differences with position may result in the development 
of thermal stresses. 

The samples used in this study were fabricated from 
commercial unplasticized polystyrene sheet cut into 
0.635 x 1.27 x 10.16 cm 3 (0.25" x 0.5" x 4") strips. After 
cutting and carefully surface polishing, the polystyrene 
was heated in an oven above its glass transition 
temperature (100°C). It was maintained at this 
temperature for approximately 2.5 h to allow it to come 
to thermal equilibrium. It was then rapidly quenched in 
either ice water or liquid nitrogen. The ice water was 
stirred to enhance heat transfer. 

After the quenching process, a segment of the sample 
near the centre of the length was removed by 
microsawing. This section was then sliced into even 
smaller pieces. The location where each piece was taken 
from the original sample was noted and then the piece 
was placed in a gradient density column to measure its 
density. Experimentally it was observed that the 

* To whom correspondence should be addressed 

quenched material exhibited relatively high density near 
the centre that decreased towards the surface, except that 
at the layers very close to the surface the density rapidly 
increased. Typical results from this experiment are shown 
in Figures 1 and 2. 

Hutchinson and Kovacs 5 have used the concept of free 
volume to explain the volume changes resulting from 
cooling. They report that the greater the cooling rate the 
larger the free volume and hence the lower the final 
density of the polymer. The higher density at the surface, 
where cooling is most rapid, appears at first glance to 
be in contradiction to this concept. There must, therefore, 
be factors in addition to rate of cooling that affect density. 
Williams, Ferry and Kovacs 6'7 have investigated the 
effect of the pressure during cooling on density. They 
report that increasing the pressure during cooling results 
in an increase in sample density. It is suggested that the 
high surface density observed in this study, in this rapidly 
cooled surface region, can be attributed to the 
compressive stresses induced at this point by differential 
thermal contractions during the quenching process. 
Below this surface layer the density rather rapidly 
decreases and then increases with further depth. The 
following is a description of a theoretical and 
experimental investigation of the density changes 
occurring during the quenching process. 
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Figure 1 Density of pieces removed from liquid nitrogen quenched 
polystyrene as a function of distance from the quench surface 
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Figure 2 Density of pieces removed from ice water quenched 
polystyrene as a function of distance 

THEORETICAL 

We consider the geometry shown in Figure 3. Suppose 
the system to be closed, i.e. there is no mass transfer in 
the system, with thermal stresses ax, 0-2, a3. A system 
property tk can, in general, be described as a function of 
the state variables: 

d~ = (O~/OT)p,z,~,,~,,~,3 d T +  (O(~/OP)T,Z,¢,,¢2.~ 3 dP 

+ (i~)ll~Z)l",r,at,¢2,a3 d Z  + (Oc~lOa ~ )T,Z,I',.2,a3 da~ 

all- ((~)I~0-2)T,Z,P,aI,~3 d0-2 -F ( ~ I ~ f f  3)T,Z,P,¢I,¢2 da3 

(1) 
where Z is the parameter introduced by Hutchinson and 
Kovacs 5 describing the non-equilibrium state of the 
system. 

Letting dp=v and considering one dimensional 
quenching, (heat transfer in direction 1 only), and 
assuming that a~=O; a2=a3=0- with no atmospheric 
pressure change, this equation can be written as: 

dv = (Ov/~T)z.,,~.,~ d T +  (av/~Z)r,a~,as d Z  

+ (OvlO0-2)r,z,,3 da2 + (OV/O0-a)T,Z,a2 des (2) 

Here the free volume is considered to be a function of 
cooling rate, temperature T, the stresses a~, 0-2 and 03, 
and the parameter Z. Suppose a hypothetical pressure ~t 
produces the same change of volume as o"a, 0"2, 0"3. As a 
first approximation it is reasonable to take n as the mean 
or hydrostatic component of the stress, i.e. assume 
7r= (0"1-I-0"2 +0"S)/3=20"/3. The thermodynamics of the 
system may then be written as: 

d r=  (~v/OT)z,~ d T +  (Ov/OZ)r,, ~ d Z +  (0V/0n)T,Z dn (3) 

We assume that the equilibrium volume of the system 
voo can be expressed as v® =vg{1 + ~q(T- T~)} and express 
the relative departure of the specific volume as 
6=(V-Voo)/Voo. Here T~ is the reference temperature 
where voo = vg at equilibrium. The left side of equation 
(3) can then be written as: 

dv=d{(1 +6)vo} 

=v~ dr+(1  +6) dv~o 

=v~ d r +  (1 +6){(OvJOn)r,z  dn+  (OvJOT)~,z d T  

+ (OV®IOZ)T,. dZ} 

fl~ and ~ are defined as: 

(OO~v/O~)T,Z = --flil)oo ( O v J o r ) . , z = ~ v ~  

where a~ is the thermal expansion coefficient of liquid 
polystyrene, while fll is the liquid compressibility. Noting 
that (Ov®/aZ)r,~ = 0, and assuming 6 << 1, it is found that: 

d(1 + di)voo = v~o d6 + (~Voo/OT[)T,Z dn + (OV~/OT)~,z d T  

(4) 
Rearranging this equation yields: 

v~o d6 = {(dV/On)T,Z-- (Ovoo/On)r,z} dn 

+ {(av/OT)., Z -  (Ovoo/aT).,z } d T +  (av/aZ)r,.  d Z  

= { a ( v -  V~)/an}T,Z d~ 

+ {a(v- v~o)/dT},,,z d T -  (dv/OZ)r,~ dZ  (5) 

Equation (5) may be approximated by: 

v~o d r =  -fl}vo~ dn+a)-v~ dT +  (Ov/OZ)r,= dZ  (6) 

where r} and a} are constant. Using the definition of 6 

v® (06/aZ)r,~ = (Ov/OZ)r,~ 

and supposing thatS: 

(06/aZ)T,n(dZ/dt) = -- (6/z) 

where z is the retardation time, we obtain: 

dn , dT 
dr/dt  = - fly - ~  + (Z f ~-~  - -  (6/'~) (7) 

Doolittle s, assuming that the retardation time depends 
only on the free volume of the polymer, expressed x in 
the following form 

z = z o e x p { ( b / f ) -  (b/fo) } (8) 

where b is a constant of the order of unity, and f is the 
fractional free volume defined by: 

f = (v - Vo)/V ® = (v ® - Vo )iv ~ + (v - v ~)/v ~ = fT + 6 (9) 

where fT=(V~--Vo)/V~ and as defined previously 
6 = ( v - v ® ) / v ~ ,  i.e., the relative excess volume with 
respect to the occupied volume v0. Ferry has assumed 
that 7: 

fT= fo + ~ f ( T -  Tg)- f l f (P--Po)  (10) 

• f is the thermal expansion coefficient for the free 
volume, and flf is the free volume compressibility of the 
polymer. In the case considered here 

f = fo + ~ f (T- -  Ts)--fl£~'k-6 (11) 

The volume change can, therefore, be written as a 
function of the free volume change, temperature and 
pressure as: 

d6 ^, dn , d T  [ 6~  b b 
d-t = - #'sf -d-t +<zf d - t - - t % , ) e x p ( ~ - ~ )  (12, 

From the above we conclude that, to calculate the free 
volume, it is necessary to know the thermal stress 

Figure 3 
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Figure 4 Density change associated with different cooling rates 

distribution, and the cooling rate within the sample 
during the quenching period. 

Generally, for one dimensional quenching the residual 
stresses are very large in the 2, 3 directions and the stress 
in the 1 direction can be neglected. The net forces in the 
2 and 3 directions are zero hence: 

where a = a2 = 03. xt stands for dimension in direction 1. 
By assuming rheological behaviour in which E is zero 
above some critical temperature and a relatively large 
constant below this temperature (i.e., the material either 
has no memory at all or complete memory), Wust 15 has 
shown that a general theory may be reduced to the 
simpler theory of Aggarwala and Saibelg: 

a(xl, t)= f f  6 f l ~  fL/2 L [aT(x~, t')] dx~ 
(~) (b-z(t) Jz,) Ot' 

[efT(x1, t')] ~ dr' (13) 
at' ) 

where t(z) is the time at which the position, z, passes 
through Tg, z(t) is the position of the solidification line 
at any time t, and a is the thermal coefficient of expansion. 
In this study the fl was taken as 0.11 x 10a(pa) in order 
to agree with earlier experimental results in this 
laboratorylS. 

In the following, Fourier heat transfer is assumed. For 
a second order thermodynamic phase change the latent 
heat is zero. Heat conduction can, therefore, be 
approximated as: 

aT=(k~ a2T (14) 
at \ pc ]  ax 2 

Two boundary conditions and one initial condition 
are needed to fully pose the problem. Initially the material 
is all at a uniform temperature. Symmetry allows us to 
model the system by half of the total width, L, yielding 
an adiabatic condition at the centre plane. The face in 
contact with the quenching fluid is undergoing convective 
cooling. However, examination of Heissler charts 13 
indicates that the temperature response for a planar 
system, when the Biot number is infinite, can be closely 
approximated by systems where the Biot number is as 
small as 10. For the system considered here, a Biot 
number of 10 requires the heat transfer coefficient to be 
greater than about 50 W/m°C. Heat transfer coefficients 
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at least this high are formed in natural convection systems 
in water. With forced or agitated convection on the 
outside, as in the system considered here, the Biot number 
will certainly be large enough to assume the surface 
temperature will be the same as the final temperature, 
i.e. the water temperature. That is, the thermal resistance 
to heat flow in the solid can be taken as being much 
greater than the interfacial thermal resistance 13. For this 
set of conditions the surface temperature is very nearly 
the ambient water temperature. This greatly simplifies 
the analysis. 

The boundary conditions used in the computer 
simulation were: 

(1) At t=0,  T= T~, (T~ is the initial temperature); 
(2) At the sample centre (x=L/2), aT/dx=O, due to 

symmetry (L is the width of the sample); 
(3) At the surface x =0, T= Too for all times greater than 

0, (T~ is the temperature of ice water). 

In the numerical simulation of equation (12) the term 
dT/dt is represented by an average value. This average 
value is taken as the average cooling rate from time t = 0 
to the time when the temperature is the mid temperature 
between T i and T~. 

ONE DIMENSIONAL NUMERICAL SOLUTION 
AND EXPERIMENTAL RESULTS 

Quasi-equilibrium density changes of polystyrene were 
measured after cooling from above T B to room 
temperature at different cooling rates under atmospheric 
pressure. Before the heating and cooling, the samples 
were cut into small pieces with the aid of a diamond saw. 
A Perkin-Elmer DSC-2 was used to control the cooling 
rate. The results of these tests are shown in Figure 4. 

To explore the effect of pressure on density, 
experiments were conducted in which samples in a high 
pressure cylinder were held under different pressures 
during the cooling. To maintain the cooling rates at a 
nearly constant low value, the cylinder holding small 
samples was placed in an oven at 110°C, two hours later 
the oven was shut down and with the cylinder and 
samples in place allowed to cool to room temperature 
over 24h. Figure 5 shows the density change of 
polystyrene as a function of the pressure applied during 
this cooling cycle. 

The procedure for calculating the density distribution 
is summarized as follows: first the calculation of the 
temperature distribution T= T(x, t) in the polymer was 
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Figure 5 Density change associated with different sample pressures 
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Figure 6 Comparison of experimental (12) and computer calculated 
(--) density distribution in ice quenched polystyrene 

performed; then the thermal stresses in the polymer were 
estimated. Finally the calculation of the free volume and 
sample specific volume, v was made. The density change 
can be determined from p = 1iv. 

It  should be pointed out that the discussion above is 
not limited to one dimensional heat transfer. If the 
temperature change T(x,  y, z, t) and resulting stresses can 
be calculated, then the density distribution within a 
three-dimensional quenched polymer can be found by 
the same general approach.  

Experiments were conducted with both one-dimen- 
sional and three-dimensional quenching, but the 
computer  simulation was performed only for the one 
dimensional quenching process. The sample preparat ion 
and density measurement were as previously described. 
To perform the one-dimensional quenching tests, samples 
were sandwiched between relatively large amounts  of 
material such that heat transfer was effectively restricted 
to be normal  to the 0.25" face in the 0.5" dimension. The 
results for change in density due to three-dimensional 
quenching are shown on Figures I and 2. Figure 6 shows 
a comparison of the results of the computat ion of density 
using equation (12) (solid line) with measurement of the 
density (circle data points) for one dimensional ice water 
quenched polystyrene. All the parameters used in this 
computat ion are from Brandrup and Immergut  l*, 
Ferry 7, Flory and Fox 16'17, Doolittle 6 and Kovacs 5 and 
are listed below. 

Glass transition temperature,  T~= 100.0°C 
Thermal conductivity, k = 0.0306 cal/s °C cm 
Specific heat, Cp = 0.439 cal/°C 
ct s =4.8  x 10-*(°C) -1 
a I =6.0  x lO-'*(°C) -1 
a,  =2 .0  x lO-'*(°C) - 1 
bo = 1.0 
fly = 1.0 x 10- l ° (Pa) -  1 
fit =2 .2  x l O - l ° ( p a )  -1 

Po = 1.0284 g/cm 3 
fo =0.025 
Zo = 100 

Here Po is the initial equilibrium density of polystyrene 
for a temperature of 110°C. Initial temperature 
To= 110°C and fl~ is chosen as 1.0x 10-1° (Pa ) - l .  The 
numerical calculation was accomplished in a VAX 
computer.  Figure 6 shows a comparison of the calculated 
densities with the experimental determined values. 

C O N C L U S I O N S  

The distribution in density as a function of position in 
quenched polystyrene has been investigated both 
experimentally and theoretically. The free volume (and 
hence density) is governed by two effects, the rate of 
change of temperature and the hydrostatic component  
of the thermal stresses. 

At the points near the surface, in the quenched 
polystyrene, the cooling rate is high and thermally 
induced compressive stresses are quite large. Previous 
work in this laboratory,  using various techniques 2 
indicates that quenching in ice water and allowing the 
samples to achieve thermal equilibrium at room 
temperature, results in surface residual stresses of 
approximately 15 MPa.  At the surface these stresses are 
apparently large enough to dominate because the 
calculated and experimentally determined density at the 
surface is larger than that inside the sample. 
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